學寶教育旗下公務員考試網(wǎng)站
網(wǎng)站地圖     設為首頁     加入收藏
當前位置:主頁  >> 行測資料  >> 其它   
其它
山東公務員行測余數(shù)同余問題
http://m.www5566.cn       2012-11-05      來源:山東公務員考試網(wǎng)
【字體: 】              
  在公務員考試的數(shù)量關(guān)系模塊中,余數(shù)相關(guān)問題是考查的傳統(tǒng)重點,也是令很多考生犯難的一種題型,更是我們一直很重視的題型。山東公務員考試網(wǎng)(http://m.www5566.cn/)對常見的幾類余數(shù)同余題目給予分析,幫助考生輕松解決此類問題。

  按照??嫉念}型,余數(shù)問題可以分為以下幾類:

  一、代入排除類型

  【例1】(江西2009)學生在操場上列隊做操,只知人數(shù)在90-110之間。如果排成3排則不多不少;排成5排則少2人;排成7排則少4人;則學生人數(shù)是多少?(   )

  A.102            B.98           C.104             D.108

  【解析】像這樣的題目直接代入選項,看看哪個符合題目所給的條件,哪個就是正確的答案,毫無疑問,選項108滿足條件,選擇D。

  二、余數(shù)關(guān)系式和恒等式的應用

  余數(shù)的關(guān)系式和恒等式比較簡單,因為這一部分的知識點在小學時候就已經(jīng)學過了,余數(shù)基本關(guān)系式:被除數(shù)÷除數(shù)=商…余數(shù)(0≤余數(shù)<除數(shù)),但是在這里需要強調(diào)兩點:

  1、余數(shù)是有范圍的(0≤余數(shù)<除數(shù)),這需要引起大家足夠的重視,因為這是某些題目的突破口。

  2、由關(guān)系式轉(zhuǎn)變的余數(shù)基本恒等式也需要掌握:被除數(shù)=除數(shù)×商+余數(shù)。

  【例2】兩個整數(shù)相除,商是5,余數(shù)是11,被除數(shù)、除數(shù)、商及余數(shù)的和是99,求被除數(shù)是多少?

  A.12         B.41         C.67         D.71

  【解析】余數(shù)是11,因此,根據(jù)余數(shù)的范圍(0≤余數(shù)<除數(shù)),我們能夠確定除數(shù)>11。除數(shù)為整數(shù),所以除數(shù)≥12,根據(jù)余數(shù)的基本恒等式:被除數(shù)=除數(shù)×商+余數(shù)≥12×商+余數(shù)=12×5+11=71,因此被除數(shù)最小為71,答案選擇D選項。

  【例3】有四個自然數(shù)A、B、C、D,它們的和不超過400,并且A除以B商是5余5,A除以C商是6余6,A除以D商是7余7。那么,這四個自然數(shù)的和是?

  A.216         B.108         C.314         D.348

  【解析】利用余數(shù)基本恒等式:被除數(shù)=除數(shù)×商+余數(shù),有A=B×5+5= (B+1)×5。由于A、B均是自然數(shù),于是A可以被5整除,同理,A還可以被6、7整除,因此,A可以表示為5、6、7的公倍數(shù),即210n。由于A、B、C、D的和不超過400,所以A只能等于210,從而可以求出B=41、C=34、D=29,得到A+B+C+D=314,選C。

  像上面這兩個題目,就是活用這兩個知識點來解題的,所以在對這類問題的練習過程中,一定要牢牢地把握這兩點。

  三、同余問題

  這類問題在考試中比較常見,主要是從除數(shù)與余數(shù)的關(guān)系入手,來求得最終答案。通過總結(jié)我們得出解決同余問題的核心口訣,如下表所示:

  同余問題核心口訣

  “最小公倍數(shù)作周期,余同取余,和同加和,差同減差”

  余同取余:“一個數(shù)除以4余1,除以5余1,除以6余1”,這個數(shù)是  60n+1

  和同加和:“一個數(shù)除以4余3,除以5余2,除以6余1”,這個數(shù)是  60n+7

  差同減差:“一個數(shù)除以4余3,除以5余4,除以6余5”,這個數(shù)是  60n-1

  說明:在這里,n的取值范圍為整數(shù),可以為正數(shù)也可以取負數(shù)。

  【例4】一個數(shù)除以4余1,除以5余1,除以6余1,請問這個數(shù)如何表示?

  【解析】設這個數(shù)為A,則A除以4余1,除以5余1,除以6余1,那么A-1就可以被4、5、6整除。4、5、6的最小公倍數(shù)為60,所以A-1就可以表示為60n,因此,A=60n+1。

  【例5】一個數(shù)除以4余3,除以5余2,除以6余1,請問這個數(shù)如何表示?

  【解析】設這個數(shù)為A,如果A除以4余3,除以5余2,除以6余1,我們知道除數(shù)與對應余數(shù)的和相同,對應的為“和同加和”,滿足這三個條件的數(shù)可以表示為:A= 60n+7。

  【例6】一個數(shù)除以4余1,除以5余2,除以6余3,請問這個數(shù)如何表示?

  【解析】除以除以4余1,除以5余2,除以6余3,我們知道除數(shù)與對應余數(shù)的差相同,對應的為“差同減差”,滿足這三個條件的數(shù)可以表示為:60n-1。

  根據(jù)以上三道例題的結(jié)論,我們還可以舉一反三地解決其他相關(guān)問題。如:

  【例7】一個三位數(shù)除以9余7,除以5余2,除以4余3,這樣的三位數(shù)共有多少個?

  A.5個         B.6個         C.7個         D.8個

  解析:除以5余2,除以4余3,我們知道除數(shù)與對應余數(shù)的和相同,對應的為“和同加和”,滿足這兩個條件的數(shù)可以表示為,P=20n+7,表示除以20余7;再配上之前的條件除以9余7,對應的為“余同取余”,我們得到這個數(shù)可以表示為180n+7,由于這個數(shù)為三位數(shù),所以n可以取1、2、3、4、5,所以共5個。

  由此可以看出,針對行測考試中出現(xiàn)的此類問題,只要大家掌握余數(shù)的基本點,包括關(guān)系式和恒等式等,牢記同余問題的解決口訣,清楚公倍數(shù)(或最小公倍數(shù))的求法,再遇到類似的余數(shù)同余問題,就能輕松、快速地解決掉。

      行測更多作答思路和作答技巧,可參看2013年公務員考試技巧手冊


互動消息